
What is a wave ? A wave is motion. It is a noun that is secretly a verb.
– Jon Mooallem

1 Propagation d’une onde

1.1 Notion d’onde

Motivation Un pavé lâché dans une mare, ça fait des vagues. L’eau soulevée est tirée vers le
bas par la pesanteur mais à mesure qu’elle s’abaisse, elle pousse l’eau voisine vers le haut.
L’eau ainsi élevée va à son tour s’écrouler, non sans entraîner l’eau adjacente, qui poursuivra
le cycle, etc. Ainsi, la vague se déplace !

Quand on claque des doigts, on met rapidement en mouvement l’air autour de sa peau. Les
particules d’air propulsées se heurtent promptement à leurs voisines et s’arrêtent donc. En
revanche, les voisines en question sont accélérées par le choc, et collisionneront à leur tour
avec les particules adjacentes, les mettant ainsi en mouvement, etc. Ce qu’on a décrit, c’est la
propagation du son !

Définition d’une onde Dans ces deux exemples, un événement a perturbé un milieu initiale-
ment au repos et le mouvement s’est propagé de proche en proche (de voisin en voisin). Cette
perturbation s’est faite sans transport de masse : même si c’est contre-intuitif, l’eau dans une
vague ne fait, en gros, que se soulever et s’abaisser mais ne se déplace pas horizontalement
(ce ne sont pas les mêmes particules d’eau qui composent la vague d’un instant à l’autre).

Le même principe se retrouve dans de nombreuses situations physiques, si bien qu’on
donne un nom à ce genre de mouvements :

Définition 1 : Onde et célérité

Une onde est une perturbation d’un milieu se propageant de proche en proche sans
transport de matière. Une onde qui ne se déforme pas a une vitesse bien définie : on
l’appelle célérité et on la note généralement c. On l’exprime en mètres par seconde.
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Figure 1 – Une vague à la surface de l’eau se propage : à chaque instant, elle est reproduite
à l’identique mais décalée dans l’espace. C’est donc une onde. Après un temps ∆t, elle aura
parcouru une distance ∆x = c∆t, où c est sa célérité. La notation u désigne la hauteur de la
surface de l’eau.
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Physicité IPhO : Ondes, interférences et diffraction

Classifications et exemples Le son est une onde acoustique. On dit que c’est une onde
longitudinale car le mouvement des particules se fait dans la même direction que la propagation.
En revanche, une vague est une onde transverse car le mouvement de l’eau (de haut en bas)
est perpendiculaire à la direction de propagation (le long de l’étendue d’eau). Dans l’air à
température et pression ambiantes, le son se propage à ≈ 340 m s−1, mais bien plus vite dans
l’eau, à ≈ 1500 m s−1.

(a) (b)

Figure 2 – (a) Une onde se propageant le long d’un ressort « slinky » est longitudinale : la
direction du mouvement (flèches noires) est parallèle à la direction de propagation (flèche
rouge). (b) Une vague est une onde transversale : la direction du mouvement de la matière
(flèches noires) est perpendiculaire à celle de propagation (flèche rouge).

La lumière est une onde électromagnétique. Dit comme ça, c’est assez mystérieux, mais on
n’a pas besoin de comprendre précisément ce qu’est un champ électrique ou magnétique pour
étudier la lumière : il suffit de savoir que c’est une onde pour prédire plein de phénomènes
différents ! Dans le vide, la lumière se propage à c0 ≈ 3× 108 ms−1, une constante fondamentale
de la physique (souvent simplement notée c). Dans un matériau, la célérité de la lumière
devient une certaine fraction de sa valeur dans le vide, à savoir c0/n, où n est par définition
l’indice de réfraction (ou indice optique) du matériau en question. On a toujours n ⩾ 1 (rien ne
se déplace plus vite que la lumière dans le vide), et quelques ordres de grandeur sont nair ≈ 1,
neau ≈ 1,33, nverre ≈ 1,5.

Il y a encore plein, plein de types d’ondes. Des ondes peuvent se propager dans un câble
électrique, il y a les ondes sismiques, les ondes gravitationnelles... Et même si on ne sait pas
ce que c’est, on va quand même pouvoir décrire une bonne partie de leurs comportements
dans ce cours !

1.2 Ondes harmoniques

Définition 2 : Onde harmonique

Une onde périodique est une onde qui se répète à l’identique dans le temps et l’espace.
Une onde harmonique (ou sinusoïdale) est une onde périodique dont la forme est celle
de la fonction sinus.

Notons que si une onde est périodique dans l’espace, elle l’est automatiquement aussi
dans le temps.

Notion d’onde harmonique Dans la figure 3, où est représentée une onde harmonique, on a
tracé la forme de l’onde, caractérisée par une grandeur u(x, t), qui dépend de la position et
du temps. La signification de cette grandeur dépend de l’onde en question : pour une vague,
c’est la hauteur de la surface de l’eau, pour une onde acoustique, on peut définir u comme
la pression du milieu, pour la lumière, il s’agit d’une des composantes du fameux champ
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électromagnétique... Là encore, pas besoin de savoir précisément ce que veut dire u ! Le plus
facile à imaginer dans sa tête, c’est souvent le cas d’une vague.
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Figure 3 – Une onde harmonique représentée : (a) en fonction du temps en un point fixé, et
(b) en fonction de l’endroit en un instant fixé.

La figure 3 permet aussi de définir quelques grandeurs utiles pour parler des ondes
harmoniques. La période temporelle de l’onde est T , il s’agit de la durée minimale qu’il faut
attendre avant que l’onde ne se répète. Sa période spatiale, plus souvent appelée longueur
d’onde est λ, c’est la taille du motif qui se répète. La fréquence de l’onde est f = 1/T , elle
s’exprime en hertz (si T = 1 s, alors f = 1 Hz). On définit aussi la pulsation ω = 2πf (si f = 1 Hz,
alors ω = 2π rad s−1) et le nombre d’onde k = 2π/λ mais ces définitions ne seront pas utiles
dans ce cours. Finalement, A est l’amplitude de l’onde, ses unités sont les mêmes que celles
de u.

Importance des ondes harmoniques Tout ça, c’est bien beau, mais pourquoi est-ce qu’on
s’intéresse particulièrement aux ondes harmoniques ? Déjà, parce qu’en général, une onde ça
peut ressembler à tout et n’importe quoi, et qu’il faut bien mettre un peu d’ordre là-dedans.
Parfois, la célérité peut même dépendre de la fréquence de l’onde : considérer une onde
harmonique est donc le choix le plus simple possible à traiter.

Dans le cas particulier de la lumière, une onde harmonique correspond à de la lumière
d’une seule couleur : on parle d’onde monochromatique. La couleur en question dépend de
la longueur d’onde : il faut retenir que le bleu se situe autour de λ ∼ 400 nm, que le rouge
est vers λ ∼ 700 nm et qu’entre les deux se situent le vert, le jaune et l’orange. Les longueurs
d’onde plus faibles que celles du bleu sont qualifiées d’ultraviolet, celles plus grandes que
celles du rouge d’infrarouge. Elles ne sont pas visibles à l’œil nu mais se propagent selon le
même principe physique que la lumière visible.

400 500 600 700

λ [nm]

Figure 4 – Spectre électromagnétique visible.

Quant au son, une onde harmonique correspond à un son « pur », proche de celui produit par
un diapason. Une fréquence élevée correspond à un son aigu, et réciproquement une fréquence
basse correspond à un son grave : l’oreille humaine perçoit les fréquences comprises entre
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20 Hz et 20 kHz environ. Une fréquence plus basse que ∼ 20 Hz ne sera plus perçue comme un
son continu, mais comme un rythme !

Relation de dispersion La longueur d’onde et la période d’une onde harmonique ne sont pas
indépendantes. En effet, on sait qu’une onde harmonique reproduit sa forme dans l’espace
après un temps T . Mais pendant ce temps, elle a simplement bougé d’une distance cT : il
faut donc que l’onde soit identique si on la translate de cT , c’est-à-dire que cT soit égal à la
longueur d’onde. Ainsi, on a

λ = Tc ou encore c = λ/T = λf = ω/k . (1)

Cette équation est appelée relation de dispersion. Lorsque la propagation de l’onde suit des
processus plus compliqués que ceux auquels on se limite ici, la célérité peut dépendre de λ.
Quand c ne dépend pas de λ, on dit que le milieu de propagation est non-dispersif : ce sera
toujours le cas dans ce cours.

1.3 Effet Doppler

Arrêtons-nous un instant pour nous demander ce qui se passe lorsqu’un émetteur d’ondes
se déplace dans l’espace. C’est un cas souvent rencontré en pratique et une bonne façon de
s’assurer qu’on a bien tout compris jusque là. Par exemple, considérons une ambulance dont
la sirène est alumée alors qu’elle se déplace : mettons que vous êtes immobiles sur le bord
de la route et que le véhicule arrive vers vous à la vitesse vém.

L’ambulance émet du son à une fréquence fém. La vitesse du son dans l’air au repos est
c mais du point de vue de l’ambulance, l’air s’approche à une vitesse vém : relativement à
l’ambulance, le son a une célérité c− vém. La longueur d’onde émise est donc λ = (c− vém)/fém.
Par ailleurs, vous entendez une fréquence freç telle que λ = c/freç. Ainsi, freç = fém/(1− vém/c) >
fém : vous entendez l’ambulance plus aigue qu’elle n’émet ! Quand elle s’éloigne, c’est l’inverse :
ça revient à compter vém négativement, et le son reçu est donc plus grave.

vém vreç

Figure 5 – Effet Doppler : l’émetteur (ambulance) a une vitesse vém et le récepteur une vitesse
vreç. Lorsque seul l’émetteur est mobile, vreç = 0.

Souvent, la vitesse de l’émetteur est faible par rapport à la célérité de l’onde : on note
vém ≪ c. Sous cette condition, on peut faire l’approximation 1/(1− vém/c) ≈ 1 + vém/c, qui rend
les calculs avec l’effet Doppler plus simples 1.

Un cas plus général à traiter est celui où émetteur et récepteur sont tous deux en
mouvement : dans ce cas, il faut se souvenir que la longueur d’onde reçue est la même que la
longueur d’onde émise (une longueur est indépendante du référentiel). On a donc

c− vém
fém

= λém = λreç =
c− vreç
freç

. (2)

Cette formule ressemble beaucoup à l’équation 3 ! Le signe des vitesses est un peu subtil
(il est compté selon l’axe émetteur → récepteur). En cas de doute, on peut imaginer le bruit

1. Cette approximation est un cas particulier de la formule (1 + ε)n ≈ 1 + nε lorsque |ε| ≪ 1. Le cas pour Doppler
revient à poser n = −1 et ε = vém/c.
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d’une ambulance ou d’une voiture de course, ou bien dessiner un canard sur un lac : les
vagues devant lui sont plus resserrées que derrière lui. D’une manière générale, c’est toujours
important de vérifier qu’une formule prédit des résultats raisonables (par exemple, freç > fém
lorsque l’ambulance s’approche de l’observateur au repos).

Figure 6 – Aides mémoire pour le signe des vitesses dans la formule de l’effet Doppler.

L’effet Doppler peut être utilisé pour mesurer la vitesse d’un objet : en envoyant une onde
dessus, on peut mesurer la fréquence de l’onde réfléchie et en déduire la vitesse. Ce principe
est par exemple utilisé pour mesurer la vitesse du sang avec une onde sonore (« échographie
Doppler »). Attention, dans ces situations, l’effet Doppler intervient deux fois. En effet, lors de
la réflexion, l’onde est d’abord reçue par l’objet mobile puis réémise par le mobile, qui agit
donc sucessivement comme récepteur puis comme émetteur.

1.4 Propagation en 2D ou 3D

Pour le moment, on n’a considéré que des ondes dans un monde à une dimension : sur
la figure 1, l’onde se propage vers la droite et ne peut pas changer de direction. Dans notre
monde à trois dimensions, ou sur la surface en deux dimensions d’une mare, c’est un peu plus
compliqué.

Quelques formes d’ondes Le cas le plus simple à traiter, c’est une onde plane.

Définition 3 : Onde plane

Une onde plane est une onde qui ne varie que selon une direction. Elle se propage en
ligne droite le long de cette direction, sans se déformer.
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Figure 7 – « Champ d’onde » d’une onde
plane. La couleur correspond à la valeur
de la grandeur u en chaque point (x, y) de
l’espace. La figure est dessinée à un instant
fixé.
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Figure 8 – Une source ponctuelle qui en-
voie des ondes de manière égale dans
toutes les directions donne lieu à des
ondes circulaires (en 2D) ou sphériques
(en 3D).

Sur la figure 7, on a représenté une onde plane dans un monde en deux dimensions, par
exemple une vague sur une mare. Dans cet exemple, les régions rouges correspondent alors à
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des endroits où la vague est basse (donc u est négatif), et les régions noires à des endroits où
elle est haute (donc u est positif). L’onde se déplace en ligne droite.

Les exemples donnés en introduction (le pavé dans la mare, le claquement de doigts)
correspondent plutôt à des sources ponctuelles (figure 8), c’est-à-dire à des points dans
l’espace qui émettent des ondes dans toutes les directions. Sur la figure, il faut imaginer que
les ondes se déplacent radialement, vers l’extérieur.

La question, maintenant, c’est : comment déterminer la direction dans laquelle se propage
une onde lorsqu’elle n’est ni plane ni circulaire ?

Notion de rayon Il y a un certain nombre de façons de répondre à cette question selon le
niveau de précision voulu 2. On va se contenter d’y répondre loin des obstacles ou des sources.
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Figure 9 – Lorsque la distance à une source ponctuelle est grande par rapport à la longueur
d’onde, les ondes émises ressemblent à des ondes planes.

Ce qu’on voit en figure 9, c’est que loin de la source ponctuelle, on a en gros des ondes
planes dans chaque direction, qui se propagent en ligne droite. L’idée qui va nous simplifier la
vie, c’est donc de dire la chose suivante :

Définition 4 : Rayon

Étant donné une onde qui se propage dans l’espace, on appelle rayon une courbe dont
la direction en chaque point donne la direction de propagation de l’onde en ce point.

Propriété 1 : Optique géométrique

Lorsque la taille des obstacles que rencontre une onde est bien plus grande que sa
longueur d’onde, l’optique géométrique prédit la forme des rayons dans l’espace. Ils
forment des lignes droites en l’absence d’obstacles, se réfléchissent et se réfractent
selon les lois de Snell-Descartes, se focalisent à la sortie d’une lentille convergente, etc.

C’est super, parce qu’on peut réutiliser plein de résultats de l’optique géométrique pour
comprendre grossièrement comment les ondes se propagent, et qu’on a pas besoin de
s’embêter avec la fréquence ou la longueur d’onde lorsqu’on détermine la forme des rayons.
D’ailleurs, on peut très bien faire des calculs d’optique géométrique sans savoir que la lumière
est une onde, comme c’était le cas historiquement !

On peut donc complémenter l’image qu’on se fait de la lumière comme de rayons en
comprenant que chacun de ces rayons décrit en fait l’onde lumineuse autour de lui :

Notons que même si le mot de « rayons » et d’« optique géométrique » sont empruntés à
l’optique, ces raisonnements sont valables pour n’importe quel type d’ondes ! Dans ce cours, on

2. Par exemple, il existe le principe de Huygens-Fresnel. Si ça vous intéresse, attention : la page Wikipédia en
français est un peu mystique, on préfèrera regarder celle en anglais ou une autre ressource.
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Miroir Lentille

Figure 10 – L’optique géométrique permet de prédire la direction de propagation des ondes
lorsqu’elle rencontre des obstacles bien plus grands que sa longueur d’onde.

va admettre les lois de l’optique géométrique, qui seront étudiées plus tard, et se concentrer
sur deux aspects que l’optique géométrique ne décrit pas :

— ce qui se passe quand les obstacles ne sont pas très grands par rapport à la longueur
d’onde, comme lorsqu’on fait passer de la lumière dans un tout petit trou,

— et ce qui se passe quand on combine plusieurs rayons entre eux.

Un dernier point utilee s’impose avant de réfléchir à ces questions.

Changements de milieux Lors du passage d’un milieu à l’autre, par exemple de l’air d’indice
nair à l’eau d’indice neau, l’optique géométrique prédit qu’une partie de l’onde incidente sera
réfléchie et une autre partie transmise (c’est-à-dire réfractée). Toutes ces ondes sont à la
même fréquence. En revanche, comme la vitesse de propagation change selon les milieux, la
longueur d’onde transmise λeau sera différente de la longueur d’onde incidente λair :

c0
nairλair

= fair = feau =
c0

neauλeau
. (3)

Là encore, ces conclusions sont vraies pour la lumière comme pour le son, par exemple, à
condition de remplacer par les célérités appropriées : cair/λair = ceau/λeau.

7/26



Physicité IPhO : Ondes, interférences et diffraction

2 Interactions entre deux ondes

2.1 Principe de superposition

On va commencer à s’amuser : à partir de maintenant, on va regarder l’effet d’avoir
plusieurs ondes harmoniques au même endroit. Pour le moment, supposons qu’elles ont la
même fréquence et donc aussi la même longueur d’onde.

Dans de nombreux cas, la grandeur u qu’on a tracée dans les figures s’ajoute d’une onde à
l’autre : par exemple, la pression en présence de deux ondes est la somme de la pression en
présence de chacune des ondes. Mais comme u varie avec l’espace, on ne peut pas simplement
ajouter les amplitudes : selon la position relative des minima et des maxima de chaque onde,
on aura des comportements différents. En général, il faut faire l’addition de fonctions sinus à
la main, avec des relations trigonométriques. Ça devient rapidement prise de tête, et surtout
c’est superflu dans beaucoup de situations : on se contentera des deux cas suivants.

Définition 5 : Coïncidence et opposition de phase

Deux ondes sinusoïdales présentes au même point sont dites en phase lorsque leurs
maxima apparaissent aux mêmes instants, et en opposition de phase lorsque les maxima
de l’un apparaissent aux mêmes instants que les minima de l’autre.

Propriété 2 : Principe de superposition

Lorsque deux ondes (ou plus) sont présentes au même point, leurs perturbations u
s’ajoutent. En particulier, pour des ondes harmoniques de même amplitude, on a interfé-
rence constructive lorsqu’elles sont en phase et il en résulte une perturbation sinusoïdale
d’amplitude maximale, et interférence destructive lorsqu’elles sont en opposition de
phase et il en résulte une perturbation nulle (voir figure 11).

Le but du jeu à partir de maintenant, ça va être de déterminer les endroits où il y a
interférence constructive et destructive dans un certain nombre de situations typiques.

2.2 Notion de différence de marche

Dans l’entièreté des situations que l’on considèrera, les deux ondes qui interfèrent pro-
viennent de la même source mais suivent des chemins différents avant de se rejoindre en
un même point. Théoriquement, rien n’interdit d’appliquer le principe de superposition à des
ondes provenant de sources différentes, mais un certain nombre de difficultés expérimentales
rendent rares les situations où c’est effectivement possible. En deux mots, il faut arriver à
« synchroniser » assez précisément les sources : on parle alors de sources cohérentes 3. Plus
de détails sur ces problèmes en partie 5.

Les ondes ayant parcouru deux chemins de longueurs différentes sont en général déphasées :
leurs maxima et minima n’apparaissent pas aux mêmes instants. Sur la figure 12, on a montré
un exemple où deux ondes arrivent au point M par deux chemins différents. Un des chemins
est légèrement plus grand que l’autre, de sorte que l’onde qui arrive par le chemin 1 est à son
minimum en M et celle qui passe par le chemin 2 est à son maximum en 2. Ainsi, les ondes
sont en opposition de phase en M et l’interférence sera destructive.

3. On se souviendra des paroles de Poetic Justice de Kendrick Lamar : « I want that interference, it’s coherent, I
can hear it. » Si les sources ne sont pas cohérentes, on n’entendra pas d’interférence.
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Figure 11 – Principe de superposition. (a) Interférence constructive lorsque les ondes sont en
phase. (b) Interférence destructive lorsque les ondes sont en opposition de phase.
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Figure 12 – (a) Deux rayons passant par des chemins différents pour atteindre un même point.
(b) Forme de l’onde le long du chemin 1 en un instant donné. (c) Forme de l’onde le long du
chemin 2, plus long que le chemin 1, au même instant.

Dans cet exemple, on voit sur les graphes de la figure 12 que la différence de longueur
des chemins vaut λ/2. En général, la méthode est donc de calculer la différence de marche δ,
définie comme la différence des longueurs parcourues par chaque rayon. Si δ vaut un nombre
entier de longueurs d’ondes, les maxima et les minima de chaque onde apparaîtront en même
temps : elles seront en phase, et l’interférence sera constructive. À l’inverse, si δ vaut un
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nombre entier de longueurs d’ondes plus une demi longueur d’onde, comme sur la figure 12,
les maxima d’une onde apparaîtront en même temps que les minima de l’autre : elles seront
en opposition de phase, et l’interférence sera destructive.

On peut résumer ces conclusions avec la méthode fondamentale suivante :

Méthode 1 : Déterminer si une interférence est constructive

Pour savoir si une interférence est constructive, on calcule la distance parcourue par
chaque rayon, puis on en fait la différence pour obtenir la différence de marche δ. Alors,
on calcule l’ordre d’interférence p définir par

p =
δ

λ
. (4)

Les interférences sont constructives lorsque p ∈ Z et destructives lorsque
(
p− 1

2

)
∈ Z.

Parfois, l’appellation « demi-entier » est utilisée pour désigner un nombre p valant un entier
et demi, c’est-à-dire tel que

(
p− 1

2

)
∈ Z.

2.3 Rayons traversant plusieurs milieux

La méthode qu’on vient de mettre en place couvre beaucoup de cas, mais pas celui où
l’onde change de milieu au cours de sa propagation. Pour comprendre ce cas, on va se focaliser
sur l’exemple de la lumière, mais la méthode s’applique aussi aux autres ondes.

Lorsqu’une onde change de milieu, on a vu qu’elle garde la même fréquence mais change
de longueur d’onde. On ne peut donc pas écrire p = δ/λ si il y a plusieurs milieux, puisqu’on
ne sait pas de quel λ on parle ! Il faudrait former le rapport ∆ℓ/λ dans chaque milieu, puis
sommer toutes ces différences pour avoir p.

Or, comme on voit grâce à la relation 3, la longueur d’onde λa dans un milieu « a » d’indice
optique na est donnée en fonction de la longueur d’onde dans le vide λ0 par λa = λ0/na puisque
le vide a un indice optique égal à 1. Donc p est la somme des rapports na∆ℓa/λ0, où ∆ℓa est la
différence des longueurs parcourus par les rayons dans le milieu « a ».

On définit le chemin optique L comme la longueur parcourue par un rayon multipliée par
l’indice optique du milieu dans lequel il évolue.

Par exemple, dans la figure 13, l’onde traverse successivement une épaisseur ℓair d’air, ℓeau
d’eau puis ℓverre de verre. Son chemin optique vaut donc nairℓair + neauℓeau + nverreℓverre.

u

Air Eau Verre

ℓair ℓeau ℓverre

Figure 13 – Un rayon traversant plusieurs milieux et la forme de l’onde le long de la propagation.
Le changement de longueur d’onde est exagéré pour être clairement visible.

On a donc une nouvelle méthode :
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Méthode 2 : Calculer un chemin optique

Pour calculer le chemin optique parcouru par un rayon, on fait la somme de la longueur
du rayon dans chaque milieu multiplié par l’indice de réfraction de ce milieu.
Ainsi, on a

L = naℓa + nbℓb + . . . . (5)

En présence de deux ondes, la différence de marche vaut δ = ∆L et l’ordre d’interférence
est p = δ/λ0, où λ0 est la longueur d’onde dans un milieu d’indice n = 1.

2.4 Notion de figure d’interférence

Pour résumer, lorsque deux ondes se superposent dans l’espace, l’amplitude de la pertur-
bation résultante varie selon le point qu’on regarde. Certains points, appelés ventres ou taches
lumineuses dans le cas de la lumière, auront une grande amplitude, le résultat d’interférences
constructives, tandis que d’autres points, appelés nœuds ou taches sombres dans le cas de la
lumière, auront une perturbation tout à fait nulle, le résultat d’interférences destructives. On
pourra désigner les ventres par leur ordre p (on parlera de « tache lumineuse d’ordre 1 » par
exemple). Les points intermédiaires auront une certaine amplitude, ni nulle ni maximale, que
l’on ne cherchera pas à calculer.

Définition 6 : Figure d’interférence

La disposition spatiale des ventres et des nœuds résultant de la superposition d’au
moins deux ondes est appelée figure d’inteférences.

Dans la plupart des cas, l’effet le plus frappant est la présence des nœuds. Par exemple,
dans le cas de lumière visible, la fréquence de l’onde est bien plus grande que celle que
nos yeux peuvent percevoir : en prenant λ ∼ 600 nm au milieu du spectre visible, on trouve
f = c0/λ = 5 × 1014 Hz ! Notre œil perçoit donc la lumière comme une quantité qui semble
constante dans le temps, alors qu’elle oscille en fait très vite. La luminosité apparente variera
d’un point à l’autre selon l’amplitude des oscillations s’y trouvant. S’il est difficile de localiser
les maxima de luminosité à l’œil, où sont situés les ventres, il est en revanche simple de
déterminer la position des nœuds : la lumière y est absente, comme effacée par un mystère
dont la solution réside dans le caractère ondulatoire de la lumière, le seul à même d’expliquer
les figures d’interférences.

Pour aller plus loin (c’est du bonus), on peut définir l’intensité lumineuse I en un point
M en effectuant mathématiquement l’opération que notre œil calcule involontairement par
son incapacité à résoudre les variations fabuleusement rapides de la lumière : un moyennage
temporel du carré de la perturbation, I(M) =

〈
u(M, t)2

〉
. Sans rentrer dans le détail, on peut

retenir que pour une onde harmonique seule, I = A2/2. Il existe une formule, qui n’est pas
à connaitre, qui donne l’intensité résultant de la superposition de deux ondes de même
intensité I0 en un point où leur différence de marche est δ : il s’agit de la formule de Fresnel 4,
I(M) = 2I0(1 + cos ()2πδ/λ). Cette formule permet de retrouver les cas particuliers des ventres,
où le cosinus vaut 1, et des nœuds, où il vaut −1.

4. Fresnel (1788-1827) était un physicien français qui a notamment étudié l’optique dans le phare de Cordouan.
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3 Trous d’Young

3.1 Présentation

Un exemple commun de figure d’interférence, c’est le montage des trous d’Young. L’idée
est d’envoyer un laser, c’est-à-dire une source monochromatique, sur un écran percé de deux
petits trous.

Comme ces trous ne sont pas grands par rapport à la longueur d’onde, l’optique géométrique
n’est pas une approximation valide en leur proximité. À la place, on va considérer que les trous
sont tellement petits qu’ils agissent quasiment comme deux sources ponctuelles, qui envoient
de la lumière dans toutes les directions. On précisera cette hypothèse en partie 5.2.

En ajoutant un écran loin des trous, on pourra observer la figure d’interférence sous la
forme de taches lumineuses sur l’écran. En pratique, on ajoute une lentille avant les trous pour
collimater le faisceau lumineux mais ce n’est pas très important pour les calculs théoriques :
ce qui compte, c’est qui la lumière qui passe par chaque trou soit en phase.

Il ne faut pas se leurrer : les rayons issus des trous interfèrent dans tout l’espace à droite
des trous, pas seulement sur l’écran. Celui-ci n’est inclus que pour voir les interférences dans
la vraie vie, de la même manière qu’on ne voit pas le rayon d’un pointeur laser de diaporama
mais qu’on voit la tache qu’il forme sur un écran. C’est très clair sur la figure 14(c), qui montre
le champ d’ondes en un instant donné : on voit bien les nœuds, qui sont les lignes blanches
émergeant des trous. Notre but est d’expliquer la présence de ces lignes.

x

y
(c)

−A

0

A−
i

0
i

(b)
I(y)

y

(a)

M

e

D

Figure 14 – (a) Montage des trous d’Young. Après le passage des trous, des rayons émergent
dans toutes les directions : on ne trace que ceux qui atteignent un point donné M sur l’écran.
(b) Intensité observée au point M en fonction de sa position sur l’écran y. (c) Champ d’ondes
pour les trous d’Young. On ne montre pas la lentille, placée à gauche du domaine tracé.

3.2 Calcul de la différence de marche

Considérons ainsi un point M sur l’écran, repéré par la coordonnée y (figure 14(a)). Un rayon
émergeant de chaque trou atteint le point M, de sorte que notre tâche est de calculer la
différence de marche entre ces rayons. On s’intéresse au cas où l’écran est loin par rapport à
l’espacement entre les trous : on écrit D ≫ e. En effet, on voit sur la figure 14(c) que le champ
d’ondes est plus simple dans cette hypothèse que proche des trous.

Maintenant, on a plusieurs manières de procéder, mais dans tous les cas c’est une étape
mathématique : il faut voir ça comme un problème de géométrie. En fait, c’est un calcul un
peu compliqué et optionnel. Si vous n’êtes pas à l’aise avec la géométrie, vous pouvez passer
en partie 3.3 en admettant la formule 6.

À première vue, la méthode la plus directe est d’appliquer le théorème de Pythagore.
La longueur du rayon du haut est ℓ1 =

√
(y − e/2)2 +D2 et celle du rayon du bas est ℓ2 =
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(a)
y

T2
2

MT1

1

(b)

θ1

θ2
PP

T1

T2

Figure 15 – Astuce géométrique pour calculer la différence de marche pour les trous d’Young.
(a) Les rayons se croisant sur un écran lointain émergent des trous presque parallèles. (b)
Construction géométrique pour déterminer la différence de leurs longueurs.

√
(y + e/2)2 +D2, la différence est donc ∆ℓ =

√
(y + e/2)2 +D2 −

√
(y − e/2)2 +D2. Le problème,

c’est qu’il faut simplifier cette formule dans la limite D ≫ e, ce qui n’a rien d’évident et qui
nécessite des maths trop avancées. Pour éviter cette complication, on va utiliser une méthode
géométrique un peu astucieuse.

Si D ≫ e, les rayons qui atteignent le point M émergent des trous quasiment parallèles
(figure 15(a)). On peut le montrer précisément : définissons θ1 comme l’angle que fait le
rayon T1M avec l’horizontale, et θ2 de la même manière pour le rayon T2M. On sait que
tan (θ1) = (y − e/2)/D et tan (θ2) = (y + e/2)/D. Ainsi, tan (θ2)− tan (θ1) = e/D ≪ 1 : les tangentes
des angles sont très proches, donc les angles eux-mêmes sont très proches. Les deux rayons
sont donc quasiment parallèles, comme on a dessiné en figure 15(b) en zoomant proche des
trous. Par la suite on considèrera que θ1 ≈ θ2 ≈ θ, où θ est définir par tan (θ) = y/D.

Comme les rayons sont presque parallèles, la distance entre T1 et l’écran est presque la
même que la distance entre P et l’écran 5. La différence de longueur entre les rayons vaut
donc ∆ℓ ≈ T2P. Par report d’angles, on a T̂2T1P = θ, d’où T2P = T1T2 sin (θ).

Pour simplifier cette formule, on peut alors utiliser l’approximation des petits angles. C’est
une approximation très utile, qu’il faut retenir, qui assure que quand un angle θ est petit, on
a sin (θ) ≈ θ, cos (θ) ≈ 1 et tan (θ) ≈ θ. Ici, en faisant l’hypothèse qu’on regarde des points sur
l’écran qui sont proches du centre, dans le sens où D ≫ y, on a θ ≪ 1 et on peut utiliser
l’approximation des petits angles. On a donc d’une part tan (θ) = y/D ≈ θ et d’autre part
T2P = T1T2 sin (θ) ≈ T1T2θ ≈ T1T2y/D.

En utilisant la définition de e, e = T1T2 et le fait que l’indice optique de l’air est proche de
1, on a donc δ = nair∆ℓ ≈ ∆ℓ, soit

δ ≈ ey/D . (6)

C’est une astuce un peu compliquée, mais elle peut être utile de temps en temps dans de
situations similaires.

3.3 Figure d’interférence

Revenons à la physique. Les ventres sur l’écran sont localisés aux positions y telles que
δ = ey/D = mλ pour m ∈ Z, soit y = mλD/e. Les nœuds sont localisés aux positions y telles que
δ = ey/D =

(
m+ 1

2

)
λ pour m ∈ Z. Entre les nœuds et les ventres, l’intensité varie continuement :

la figure d’interférence sur l’écran est représentée en figure 14(b) et est donc consitutée d’une

5. Ce n’est peut-être pas facile à voir « intuitivement ». Voici un argument plus précis. Considérons le cercle
centré en M et passant par T1 : en zoomant proche des trous, il apparaît quasiment droit et se confond avec le
segment T1P. Comme tous ses points sont à égale distance de M, on sait que la différence de longueur des rayons
vaut ∆ℓ ≈ T2P.
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succession de taches lumineuses séparées par des taches sombres. Sur cette figure, on a
défini l’interfrange comme la distance entre deux ventres, i = λD/e.

Alternativement, on peut formuler le résultat en termes d’angles : puisque θ ≈ y/D et
δ ≈ ey/D, on trouve δ ≈ eθ. Ainsi, dans la limite D ≫ e, y, la différence de marche est
indépendante de D lorsqu’on l’exprime en fonction de θ. Quand θ =

(
m+ 1

2

)
λ/e, m ∈ Z, on

observe uniquement des nœuds : cela correspond aux lignes blanches sur la figure 14(c). Les
nœuds sont donc d’autant plus espacés et visibles que e est faible : on observera de belles
interférences pour e de l’ordre de λ. Ainsi, on ne peut pas négliger la longueur d’onde devant les
autres grandeurs du système quand on veut prendre en compte les phénomènes ondulatoires !

Nous venons de décrire le montage des trous d’Young dans le monde bidimensionnel d’un
schéma sur une feuille. Dans la vraie vie tridimensionnelle, si l’écran est percé de deux trous
circulaires, on observera des franges d’interférence : chaque tache que nous avons décrite en
2D sera en fait une bande verticale. C’est dû au fait que les trous, étant très petits, diffusent
la lumière dans toutes les directions, et éclairent donc l’écran uniformément dans la direction
perpendiculaire aux trous (figure 16(a)).

(a)
Faisceau laser

(b)
Faisceau laser

Figure 16 – Croquis en trois dimensions. (a) Trous d’Young. (b) Fentes d’Young.

Un peu contre-intuitivement, si on remplace les trous par des fentes verticales, on n’obser-
vera plus sur l’écran des fentes mais des taches, dont la hauteur correspond à la taille du
faisceau laser incident (figure 16(b)). Ces résultats seront à mettre en relation avec les notions
qualitatives qu’on présentera à propos de la diffraction en partie 5.

Une remarque s’impose sur la conservation de l’énergie. D’une manière générale, les
interférences ne détruisent pas d’énergie ni n’en créent. Elles permettent uniquement de
prédire les directions où une onde parvient à se propager, et les directions dans lesquelles
les interférences destructives empêchent la propagation. Mais si des interférences sont
destructives à un endroit, elles seront généralement constructives à un autre endroit, comme
on le voit avec les trous d’Young : il est impossible de magiquement « effacer » l’énergie de
l’onde incidente, à moins de l’absorber dans un matériau sous forme de chaleur.

Les trous d’Young (1801) revêtent une importance historique particulière, puisque ce furent
une des premières expériences permettant de mettre en évidence le caractère ondulatoire
de la lumière : il était inenvisageable d’expliquer autrement la figure d’interférence observée,
malgré l’ignorance des liens entre lumière et électromagnétisme.
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4 Ondes stationnaires

4.1 Corde de Melde

Un autre exemple fondamental d’interférences se produit lorsqu’une onde est réfléchie par
une paroi. Alors, l’onde réfléchie peut interférer avec l’onde incidente. Une implémentation
expérimentale classique de cette situation est la corde de Melde 6.

Lorsqu’on tend une corde entre deux points, comme une corde de guitare, une onde peut
s’y propager : en effet, si une portion de la corde est déformée, la tension agira pour la rendre
droite mais la déformation se propagera à la corde alentour, entraînée par son inertie.

La corde de Melde est un montage où une corde tendue est fixée à ses deux extrémités et
secouée sinusoïdalement à l’une d’entre elles. Une onde se propagera donc depuis l’extrémité
forcée sinusoïdalement puis se réfléchira contre l’extrémité tendue. La corde est ainsi le lieu
de la superposition entre l’onde incidente et l’onde réfléchie : on peut appliquer notre méthode
habituelle et calculer la différence de marche.

Il y a toutefois deux subtilités. Premièrement, pour le moment on n’a pas appris à calculer
une différence de marche en prenant en compte les réflexions. Il faudra donc compléter la
formule qu’on utilisait jusque là pour le chemin optique.

Secondement, comme les deux extrémités sont fixées, l’onde réfléchie peut à nouveau
se réfléchir en atteignant l’autre extrémité, et rebondir ainsi encore et encore d’un côté à
l’autre de la corde. Ce n’est pas un cycle qui se poursuivra pour toujours : physiquement, ce
phénomène est limité puisque de l’énergie est perdue à chaque réflexion. Mais c’est embêtant
pour traiter le problème simplement.

Dans la suite, on se contentera d’étudier la superposition de l’onde incidente et de la
première réflexion. Cependant, pour que cette approximation soit réaliste, il faudra imposer que
les deux extrémités de la corde soient des nœuds : ce doit être le cas puisqu’elles sont fixées,
mais ce n’est pas automatique dans le calcul si l’on néglige les réflexions supplémentaires.

(a)

(b)

m = 1 m = 2 m = 3

Figure 17 – Corde de Melde. (a) Schéma du montage. (b) Forme de l’onde à résonance pour
quelques valeurs de m ∈ N∗. L’onde est « stationnaire » : la perturbation est toujours nulle aux
nœuds et oscille à la fréquence f entre ceux-ci (la corde n’est pas immobile !)

4.2 Chemin optique dans le cas d’une réflexion

Lorsqu’une onde se réfléchit, un maximum peut devenir un minimum (figure 18). Pour une
onde harmonique, inverser les maxima et les minima revient revient à décaler l’onde de λ/2.
Dans le calcul du chemin optique, il faut donc ajouter λ/2 par réflexion.

En tout cas, c’est vrai pour une onde sur une corde qui se réfléchit à son extrémité. C’est
aussi vrai pour de la lumière qui se réfléchit contre un miroir. Si la réflexion se fait à l’interface

6. Melde (1832 – 1901) était un physicien allemand et musicien amateur qui s’intéressa au comportement d’une
corde dans l’expérience éponyme.
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t

Figure 18 – La réflexion d’une onde sur une corde change son signe.

avec un milieu dans lequel l’onde peut se propager (air/eau...), il n’y a pas toujours cette
inversion. Elle est présente quand le milieu contre lequel l’onde se réfléchit a un indice optique
supérieur au milieu de l’onde incidente. Dans tous les cas, il n’y a jamais d’inversion pour une
onde transmise : seulement pour une onde réfléchie.

On peut rajouter cette remarque dans notre méthode pour calculer un chemin optique. La
différence de marche, quant à elle, vaut toujours la différence des chemins optiques.

Méthode 3 : Calculer un chemin optique en présence de réflexions

Pour calculer le chemin optique d’un rayon, on fait la somme de la longueur du rayon
dans chaque milieu multiplié par l’indice de réfraction de ce milieu. Puis, on ajoute une
demi longueur d’onde pour certaines réflexions.
Ainsi, on a

L = naℓa + nbℓb + · · ·+ (λ/2)×
(

réflexions contre un miroir
ou un milieu d’indice supérieur

)
. (7)

4.3 Calcul de la différence de marche

On s’intéresse à la différence de marche entre les deux ondes atteignant la position x
sur la corde de longueur L. La première onde, excitée depuis l’extrémité gauche située en
x = 0, a parcouru une longueur ℓ1 = x. La seconde a parcouru toute la longueur de la corde
puis est revenue jusqu’à x : ℓ2 = L+ (L− x). Comme il n’y a pas de changement de milieu au
cours de cette propagation mais qu’il y a une réflexion, la différence de marche est égale à
δ = ℓ2 − ℓ1 + λ/2 = 2(L− x) + λ/2 où λ est la longueur d’onde.

Ainsi, il y aura des nœuds là où δ =
(
m+ 1

2

)
λ, m ∈ Z, soit L− x = mλ/2. Notons qu’on peut

ici se limiter à m ∈ N comme λ et L − x sont positifs. Par construction, l’extrémité gauche
est toujours un nœud (x = L). Cependant, il faut imposer que l’extrémité droite soit aussi un
nœud :

L = mλ/2, m ∈ N∗ . (8)

Cette condition est appelée condition de résonance, et s’exprime de manière équivalente
sur la fréquence de l’excitation :

f = fm, où fm =
mc

2L
, m ∈ N∗ (9)

avec c la célérité de l’onde.
Si cette condition n’est pas vérifiée, on ne peut pas légitimement oublier les réflexions de

l’onde sur l’extrémité droite, et la superposition des nombreuses ondes provenant de chaque
réflexion, déphasées les unes par rapport aux autres, créera un motif désordonné et fluctuant.
En revanche, à résonance, c’est-à-dire pour f = fm, m ∈ N∗, on observera une belle figure
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d’interférence (figure 17(b)) puisque les réflexions successives auront la même forme que
l’onde initiale. Les nœuds seront situés en les positions x telles que L− x = m′λ/2 où m′ ∈ Z,
c’est-à-dire L−x = m′L/m en utilisant la condition de résonance. Puisque 0 ⩽ x ⩽ L, il y a donc
m+ 1 nœuds en comptant les extrémités. Les ventres seront alors situés entre les nœuds, et
on comprend la figure 17(b).

Sur cette figure, l’interprétation de la condition de résonance est claire : la longueur de la
corde doit pouvoir être divisée en un nombre entier de demi longueurs d’onde. Faire un dessin
est le moyen le plus simple pour établir rapidement la formule L = mλ/2.

4.4 Spectre et conséquences

Notion de spectre À résonance, on dit que l’onde sur la corde de Melde est une onde
stationnaire : elle oscille dans le temps avec une amplitude qui dépend de la position plutôt
que d’avancer dans une direction. Par opposition, toutes les ondes qu’on a considéré jusqu’ici
peuvent être qualifiées d’ondes progressives, puisqu’elles se propagent. Autrement dit, on a
montré que la superposition de deux ondes progressives se propageant dans des sens opposés
donne une onde stationnaire.

La forme de l’onde f = fm pour une valeur de m ∈ N∗ donnée est appelée un mode propre
de l’onde, et la fréquence fm associée est une fréquence propre. L’ensemble des fréquences
propres de la corde est appelé le spectre de la corde. La fréquence la plus basse, f1 = c/2L,
est appelée la fréquence fondamentale, et les autres sont des harmoniques.

Quand on frappe une corde de guitare, on constate que du son est émis aux différentes
fréquences propres : on peut comprendre ce phénomène en se rappelant qu’une fréquence
hors résonance donne lieu à des oscillations désordonnées de la corde, et que seules les fré-
quences propres sont susceptibles de créer des motifs stationnaires qui peuvent transmettre
leurs vibrations au son environnant.

La hauteur du son entendu correspondra à la fréquence fondamentale. La fréquence des
harmoniques et leurs intensités déterminent le timbre de la guitare. Le concept de mode
propre s’étend à beaucoup d’autres systèmes qu’une corde tendue : il est pertinent dès lors
qu’on piège une onde dans un domaine d’où elle ne peut s’échapper. Ainsi, les tambours,
caisses de résonance, cymbales et autres triangles ont tous des modes propres, mêmes s’ils
sont sensiblement plus compliqués que ceux d’une corde de guitare. Le timbre de tous ces
instruments est donc déterminé par leur spectre !

Instruments à vent simples En fait, on peut même étendre cette analyse aux instruments à
vent (flutes...) mêmes s’ils peuvent laisser l’air s’échapper. Dans leur cas, l’onde considérée
est une onde acoustique. Jusqu’à présent, notre onde se propageait sur une corde dont les
deux extrémités étaient fixées : on parle de conditions aux bords « fermé – fermé ». Ainsi les
deux extrémités étaient forcément des nœuds.

Ce n’est pas le cas d’une flute. Dans une grossière approximation, une flute à bec a des
conditions aux bords « fermé – ouvert » : d’un côté de la flute, là où on met la bouche, le trou
est tout petit et l’air ne peut pas s’échapper (extrémité fermée). De l’autre côté, en revanche,
la flute est ouverte sur l’air ambiant (voir figure 19) : du point de vue de l’onde acoustique qui
se crée dans la flute, ce n’est pas un nœud !

En fait, on peut se convaincre que c’est un ventre. En voici une explication rapide (ce n’est
pas nécessaire de la comprendre) : le contact avec l’air ambiant fixe la valeur de la pression à
la sortie de la flute. Or, une onde acoustique est constituée d’une alternance entre régions de
forte pression où le fluide est à l’arrêt, et régions de grands mouvement du fluide. En effet, la
pression importante pousse le fluide sur les côtés, qui accélère donc et crée une nouvelle
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zone de haute pression en se comprimant plus loin. Dans ce modèle naïf, fixer la pression
à la pression extérieure revient donc à imposer que l’on se trouve dans une zone de grands
mouvements du fluide, soit un ventre.

Avec ces conditions aux bords différentes (un nœud d’un côté, un ventre de l’autre), le jeu
pour trouver les modes propres change. En figure 17, il fallait faire rentrer un nombre entier
de demi longueurs d’onde entre les deux extrémités pour que ce soient des nœuds. Ici, il
faut rajouter un quart de longueur d’onde pour que la sortie soit un ventre. La condition de
résonance est donc L = mλ/2 + λ/4, m ∈ N (m = 0 est permis !) et le spectre est constitué des
fréquences

fm =
(m+ 1/2)c

2L
, m ∈ N . (10)

m = 0 m = 1 m = 2

Figure 19 – Quelques modes propres d’une flute idéalisée.
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5 Obstacles aux interférences

Pour finir, on va voir quelques raisons pour lesquelles observer des interférences peut
être compliqué en pratique. Ces raisons sont aussi des phénomènes dignes d’intérêt en
eux-mêmes !

5.1 Battements
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Figure 20 – Lorsqu’on superpose deux
ondes de fréquences proches mais
différentes, des battements appa-
raissent. L’enveloppe est tracée en
rouge.

Principe Si on voulait faire des interférences avec
deux sources d’ondes différentes (par exemple deux
lasers différents plutôt qu’un seul laser dont le rayon
emprunte deux chemins différents), il faudrait s’assurer
que leurs fréquences soient égales : voyons ce qu’il se
passe si ce n’est pas le cas.

Déjà, on peut comprendre pourquoi on n’observera
pas d’interférences quand la fréquence f1 d’une des
ondes est différente de celle de l’autre onde f2. En
regardant la figure 11, on se rappelle qu’on observe
des interférences constructives quand les maxima des
deux ondes apparaissent aux mêmes instants, et des
interférences destructives quand les maxima de l’une
apparaissent aux mêmes instants que les minima de
l’autre. Mais si les fréquences sont différentes, les
maxima des deux ondes finiront forcément par se dé-
caler ! C’est comme si on augmentait constamment la
différence de marche au cours du temps.

Plus précisément, reprenons le principe de super-
position avec deux ondes de même amplitude mais de
fréquences différentes f1 et f2. Si ces fréquences sont
proches, le résultat de la somme est montré en figure
20. Puisque |f1 − f2| est faible par rapport à f1 et f2, les
ondes restent longtemps quasiment en phase et inter-
fèrent constructivement. Mais, au bout d’un moment,
elles se décalent suffisamment pour être en opposi-
tion de phase : elles interfèrent alors destructivement.
Ces étapes de coïncidence de phase puis d’opposition
de phase s’alternent, et confirme notre scénario intui-
tif : tout se passe comme si la différence de marche
augmentait constamment avec le temps. On dit que su-
perposer deux ondes de fréquences différentes donne
lieu à des battements.

Fréquence des battements En bas de la figure 20, on voit que les battements ressemblent à
une sinusoïde de fréquence rapide, comparable à f1 et f2, dont l’amplitude varie lentement au
cours du temps. On dit que la fréquence rapide, qui se trouve valoir (f1 + f2)/2, est la fréquence
porteuse, et que l’amplitude est modulée par une enveloppe, tracée en rouge en figure 20.

La période de l’enveloppe est le temps entre deux minima d’amplitude. Elle vaut

fbattements = |f2 − f1| . (11)
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Si les deux ondes considérées sont des ondes acoustiques dont les fréquences sont
perceptibles par l’oreille humaine, on entendra ainsi une note dont le volume oscille avec le
temps, et s’annule périodiquement. Le temps entre deux annulations est 1/fbattements.

5.2 Diffraction

Parlons maintenant brièvement de diffraction. En quelque sorte, la diffraction c’est des
interférences avec une seule fente d’Young. Mais s’il n’y a qu’une seule fente, comment peut-il
y avoir plusieurs chemins différents pour l’onde ? L’idée, c’est que cette fente a une certaine
largeur : les rayons ont pû passer par n’importe quel point dans l’ouverture, et si deux rayons
étant passés par deux points différents se rencontrent, ils pourront interférer.

La différence de marche accumulée dans ce scénario est plus faible que celle entre les
rayons étant passés par chaque fente dans le montage des fentes d’Young. Intuitivement,
on comprend qu’elle est régie par l’ordre de grandeur de la largeur de la fente, a. Si cette
largeur est beaucoup plus faible que l’espacement entre les fentes, e, on pourra observer
correctement la figure d’interférence. Sinon, la figure due aux interférences entre les deux
fentes d’Young sera combinée avec la figure due à la diffraction par chaque fente.

Cette figure ressemble à celle des fentes d’Young : certaines directions sont le lieu de
nœuds, d’autres le lieu de ventres (figure 21), mais les distances entre ventres successifs ne
sont pas régulières comme pour les fentes d’Young. On peut montrer (c’est compliqué !) la
formule suivante donnant la valeur de l’angle auquel on observe le premier nœud :

sin (θ1) = λ/a . (12)

Faisceau laser 2θ1

Figure 21 – Diffraction par une fente.

On avait montré en section 3 que l’angle du premier nœud dû aux trous d’Young vaut λ/2e.
Ce résultat confirme quantitativement notre remarque qualitative : si a ≪ e, alors on pourra
observer une belle figure d’interférence due aux trous d’Young sans avoir à se soucier de la
diffraction.

La diffraction n’est pas un phénomène limité aux fentes : en fait, n’importe quel obstacle
diffracte les ondes qui le rencontrent. La forme de la figure de diffraction changera selon la
forme de l’obstacle, mais le principe reste le même. Un principe important à retenir, c’est
que la figure de diffraction respecte les symétries de l’obstacle : par exemple, un obstacle
triangulaire donnera une figure qui a les mêmes symétries qu’un triangle. En fait, on peut
même se servir de se principe pour déduire la forme de l’objet diffractant lorsqu’il est inconnu :
c’est ainsi qu’a été déterminée pour la première fois la forme en double hélice de la molécule
d’ADN en 1953 !

L’équation 12 n’est valable rigoureusement que dans le cas d’une fente, mais elle donne
toujours le bon ordre de grandeur de θ1 même pour d’autres obstacles. La diffraction est la
plus notable quand l’angle du premier nœud est d’ordre 1, donc lorsque la taille de l’objet est
de l’ordre de la longueur d’onde. Mais même lorsque l’objet diffractant est bien plus grand que
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la longueur d’onde, on peut observer la diffraction : par exemple, la Lune diffracte la lumière
des étoiles visibles juste au bord de celle-ci dans le ciel. Certes, l’angle du premier nœud est
très faible, mais comme la Terre est très loin de la Lune, on peut quand même en mesurer les
effets !

5.3 Autres obstacles

Contraste Toutes les interférences que l’on a considérées jusqu’à maintenant se produisaient
entre deux ondes de même amplitude. Mais dans la vraie vie, il est probable que ce ne soit pas
exactement le cas : les deux ondes peuvent avoir une intensité optique ou sonore légèrement
différentes.
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Figure 22 – Superposition de deux ondes d’amplitudes différentes. (a) Interférence constructive.
(b) Interférence destructive.

Sur la figure 22, on voit que quand les ondes n’ont pas la même amplitude, les interférences
destructives ne donnent pas une onde d’amplitude nulle, mais plutôt d’amplitude faible. Ainsi,
par exemple, lors d’une expérience des trous d’Young, si un trou est un peu plus grand que
l’autre et laisse donc passer plus de lumière, les franges sombres ne seront pas totalement
dénuées de lumière. On dit que le contraste est réduit par rapport au cas où les deux ondes
ont la même amplitude.

Le même principe est par exemple valable pour des battements : lorsque les ondes n’ont
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pas la même amplitude, l’enveloppe des battements ne va pas jusqu’à zéro (voir figure 23).

Cohérence Finalement, comme on a évoqué plus haut la notion de cohérence, voyons en
quelques mots sa signification qualitative (pour la culture seulement).
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Figure 23 – Battements avec deux
ondes d’amplitudes proches mais pas
égales.

Si on pense à une ampoule qui envoie de la lumière
dans toutes les directions, il serait illusoire de se dire
que le champ d’onde résultant ressemble vraiment à
celui de la figure 8. Ce qu’on voit sur la figure est une
idéalisation, mais en réalité l’émission de lumière par
l’ampoule est un processus qui résulte de la haute
température du filament dans l’ampoule, et de l’agita-
tion microscopique qui y correspond. En gros : puisque
les atomes du filament bougent dans tous les sens, ils
« secouent » le champ électromagnétique autour d’eux
et envoient des ondes lumineuses comme on enverrait
des ondes sur un drap qu’on secoue avant de le plier.

Mais ce processus est compliqué et globalement
aléatoire ! Plutôt que d’envoyer un champ très régu-
lier comme celui de la figure 8, qui serait dû à une
source cohérente, le champ envoyé par une ampoule
est constitué de plein de domaines qui ressemblent
chacun à un morceau de la figure 8 mais qui sont
déphasés entre eux de manière aléatoire. On appelle
chacun de ces domaines un train d’ondes. On com-
prend qu’il ne peut y avoir d’interférences qu’au sein
d’un de ces domaines. Sinon, le déphasage aléatoire
entre deux trains d’ondes s’ajoutera au déphasage dû
à la différence de marche dans un montage d’interfé-
rences et empêchera d’observer correctement la figure
d’interférence.

Un laser est une source beaucoup plus cohérente
qu’une ampoule. On ne peut pas dire qu’il envoie une
seule onde plane pendant toute sa durée de fonction-
nement, mais les trains d’ondes durent beaucoup plus
longtemps et sont donc beaucoup plus grands. Par conséquent, c’est plus facile expérimenta-
lement d’avoir une belle figure d’interférence en utilisant un laser.
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6 Films minces

Cette partie est en bonus. Même si elle est techniquement au syllabus du test de présélec-
tion des olympiades, son sujet est un peu désuet et n’a pas fait l’objet d’une seule question
pour les terminales depuis plus de dix ans. Mais elle constitue une belle application de ce
qu’on a appris jusque là !

6.1 Films minces en lumière monochromatique

Présentation On va voir un nouvel exemple d’interférences, basé sur la réflexion d’une onde
tout comme la corde de Melde. Ce coup-ci cependant, on ne confinera pas la propagation de
l’onde dans un domaine fini : il n’y aura pas d’histoire de modes propres.

On dépose une fine couche d’un milieu (eau, verre, huile...) sur une surface plane réflé-
chissante : on parle de film mince. En éclairant cette surface depuis le haut, une partie de la
lumière est directement réfléchie par le film. Une autre partie est transmise mais se réfléchit
contre le fond avant de ressortir du film (figure 24(a)). L’onde s’étant réfléchie contre le
fond peut à nouveau se réfléchir contre la surface et rebondir plusieurs fois à l’intérieur du
film, mais on néglige l’amplitude de ces réflections supplémentaires et on se limite aux deux
rayons dessinés sur la figure. Dans la pratique, cette hypothèse est vérifiée pour des raisons
différentes selon la situation précise considérée : on ne rentrera pas plus dans les détails.

θ

e

(a) (b)

Écran
Laser

(c)

e(x, y)

Figure 24 – (a) Éclairage d’un film mince uniforme. Pour chaque rayon incident, deux rayons
émergent du système : un rayon réfléchi par la surface du film et un rayon réfléchi par le fond
du film. (b) Montage expérimental pour l’observation des interférences dues à un film mince.
(c) Film mince d’épaisseur variable. L’axe x est l’axe horizontal, et l’axe y va en profondeur
dans le schéma (il est perpendiculaire à l’axe x et à la direction dans laquelle est mesurée
l’épaisseur e).

Comme on voit sur la figure, les deux rayons émergent parallèles. Si on veut les faire
interférer, il faut les amener au même point. Une façon de faire ça, c’est de mettre une lentille
à la sortie du film comme en figure 24(b) pour focaliser les rayons sur un écran. Comme ça,
les deux rayons atteindont le même point et on observera leur interférence sur l’écran. Dans
la pratique, c’est un peu ce que fait notre œil lorsqu’il accomode pour regarder le film : si on
veut juste observer les interférences sans faire de mesure précise, on peut donc directement
regarder le film !

Calcul de la différence de marche Partons donc sur notre méthode habituelle de calculer la
différence de marche.

On va se limiter à un cas simple, celui de l’incidence normale, c’est-à-dire quand θ = 0
sur la figure 24(a). Bien sûr, c’est un cas compliqué à observer expérimentalement puisque
la lumière est renvoyée exactement dans la direction d’où elle vient mais les calculs sont
beaucoup plus faciles et donnent une bonne idée du résultat pour une valeur quelconque de θ.
En incidence normale, les rayons partagent leur trajet dès qu’ils sont ressortis du film : la
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différence de marche est donc seulement due à l’aller-retour du rayon ayant pénétré dans le
film. En prenant en compte son indice optique n, elle vaut ainsi δ = 2ne (chacun des rayons
subit un déphasage de π lors de sa réflexion, qui se compensent donc).

Quand on envoie un laser sur le film, chacun des rayons du laser se scinde en deux rayons
qui parcourent des trajets similaires : la différence de marche accumulée est la même partout
et l’intensité observée sur l’écran est donc uniforme. Par exemple, si δ = mλ, m ∈ Z, l’écran
entier sera un ventre et l’intensité y sera maximale, et si δ =

(
m+ 1

2

)
λ, m ∈ Z, l’écran entier

sera un nœud et l’intensité y sera nulle.
On peut rendre ce comportement plus intéressant en considérant des films dont l’intensité

varie en fonction de la position (figure 24(c)). Si cette variation est suffisament douce, c’est-à-
dire si e(x, y) ne varie pas beaucoup quand x ou y varient d’une distance de l’ordre de λ, on
peut reprendre en chaque point le calcul précédent pour la différence de marche, qui vaut
donc δ = 2ne(x, y) pour un rayon qui atteint le film à la position (x, y). Essayez de prédire la
figure d’interférence qu’on observera alors !

Figure d’interférence La réponse, la voici. Pour mieux comprendre ce qui se passe, on peut
considérer le cas particulier où la surface du film est plane mais penchée par rapport à son
fond : e(x, y) = tan (α)x, où l’angle α est défini en figure 25(a).

(a) α

(b)

Figure 25 – Figures d’interférences pour quelques formes de films minces. (a) Film en « coin » :
plan incliné. (b) Film en forme de goutte.

Ainsi, la différence de marche vaut δ = 2n tan (α)x. Comme dans le cas des trous d’Young,
il s’agit d’une fonction linéaire de la position le long de l’écran : on observera alors à nou-
veau des franges lumineuses et sombres. Plus précisément, les franges lumineuses corres-
pondent aux ventres, c’est-à-dire les positions sur l’écran dont la lumière a atteint le film en
x = mλ/[2n tan (α)] pour m ∈ Z, et les franges lumineuses correspondent aux nœuds, c’est-à-
dire les positions sur l’écran dont la lumière a atteint le film en x =

(
m+ 1

2

)
λ/[2n tan (α)] pour

m ∈ Z. Si on regarde directement le film, la lentille et l’écran sont remplacées par notre œil
et on voit directement la figure d’interférence sur le film : les franges seront alors espacées
d’une distance i = λ/[2n tan (α)], l’interfrange.

Quand e(x, y) n’est plus une fonction aussi simple, c’est-à-dire quand la surface du film
est courbe, on n’observe plus des franges droites : les courbes tracées sur l’écran par les
ventres et les nœuds ont des formes plus compliquées. Par contre, on sait toujours que
chacune de ces courbes correspond à une valeur donnée de la différence de marche δ, et
donc de l’épaisseur e puisque δ = 2ne(x, y). Ce qu’on voit sur l’écran est donc une sorte de
« carte topographique » de la surface du film, comme les cartes traçant les lignes de niveau de
l’altitude d’une montagne.
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Dans la figure 25(b), on a tracé la figure d’interférence lorsque le film est une goutte de
liquide (la forme de sa surface est donc celle d’une portion de sphère). Puisque les courbes
où la goutte a une épaisseur constante sont des cercles, on observe sur l’écran des anneaux
lumineux et des anneaux sombres. Cette construction met en lumière un point important :
on sait que la goutte admet une symétrie circulaire (elle est inchangée si on la tourne d’un
certain angle autour de son centre), donc on en déduit que la figure d’interférence aura la
même symétrie. Il faut toujours faire attention aux symétries des problèmes qu’on rencontre
en physique : elles permettent souvent de déduire des informations précieuses sur la solution.

6.2 Interférences en lumière blanche

Qu’est-ce que la lumière blanche? Pour le moment, on s’est uniquement intéressé à des
interférences avec des ondes harmoniques. Comme on l’a dit, pour la lumière, ça correspond à
des ondes monochromatiques, c’est-à-dire d’une seule couleur du spectre de la figure 4.

Mais sur ce spectre, il n’y a pas de blanc. Alors, de quoi est faite la lumière blanche? La
réponse, c’est qu’il s’agit d’une superposition d’ondes monochromatiques à chacune des lon-
gueurs d’onde du spectre visible. La lumière blanche, ce n’est pas une onde monochromatique !

Ce n’est pas évident du tout. À première vue, ça complexifie beaucoup notre travail pour
comprendre les interférences, puisque la perturbation u n’est plus sinusoïdale, c’est une
fonction super compliquée... Mais en fait, on va s’en sortir quand même grâce à notre étude
des ondes harmoniques.

En effet, malgré le fait que toutes les couleurs soient mélangées dans la lumière blanche,
notre œil est quand même capable de les distinguer. Il faut imaginer que chaque longueur
d’onde évolue indépendamment des autres lorsqu’elle se propage dans l’espace ou qu’elle
interfère, et qu’à la fin notre œil (ou le capteur d’une caméra) combine toutes les longueurs
d’onde qu’il reçoit et forme la couleur correspondante : s’il reçoit toutes les longueurs d’onde,
par exemple, on perçoit du blanc.

Finalement, on admet la propriété suivante, dont la preuve est hors du cadre de ce cours.
A posteriori, ça confirme qu’il était pertinent d’étudier en détail les ondes harmoniques
puisqu’elles servent de « briques fondamentales » pour construire des ondes plus compliquées.

Propriété 3 : Synthèse additive des figures d’interférences

La superposition de plusieurs ondes harmoniques de fréquences différentes résulte en
la somme de l’intensité due à chaque fréquence présente seule. En résumé, on peut
calculer la figure d’interférence indépendamment pour chaque fréquence et sommer
ensuite les intensités.

Film mince en lumière blanche Reprenons le cas d’un film mince dont la surface est un plan
incliné (figure 25(a)) mais plutôt que de l’éclairer avec un laser, qui est une source de lumière
monochromatique, éclairons-le avec de la lumière blanche. Pour savoir quelle est la figure
d’interférence, on peut utiliser la synthèse additive.

Puisqu’on connait la figure d’interférence correspondant à chaque longueur d’onde lors-
qu’elle est présente seule, on peut les combiner pour obtenir la figure d’interférence cor-
respondant à la lumière blanche. Toutes ces figures sont constituées de franges. Chaque
longueur d’onde a une frange lumineuse en x = 0, puisqu’alors δ = 0. En revanche, l’interfrange
i = λ/[2n tan (α)] dépend de la longueur d’onde : les franges des différentes longueurs d’onde
vont se décaler en fonction de x.
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En figure 26, on a représenté les figures d’interférences de quelques couleurs présentes
seules et la figure d’interférence en lumière blanche.

(b)

(a)

x = 0 x1

Figure 26 – Couleurs interféren-
tielles. (a) Figures d’interférences pour
quelques longueurs d’ondes. (b) Résul-
tat de la recombinaison de toutes les
couleurs, appelé échelle des teintes
de Newton.

En x = 0, toutes les franges colorées se recombinent
pour former du blanc mais plus loin, à la position no-
tée x1 sur la figure, une frange lumineuse de chaque
couleur bleutée coïncide à peu près avec une frange
sombre de toutes les autres couleurs : la lumière ob-
servée sera donc bleue. D’une manière générale, il faut
combiner la couleur de toutes les franges lumineuses
présentes à une certaine position pour obtenir la cou-
leur observée.

Conséquences pratiques La succession de couleurs
observées dans ce montage est appelée échelle des
teintes de Newton. Plus on considère des valeurs éle-
vées de x, c’est-à-dire de δ, plus deux longueurs
d’ondes différentes sont décalées : ainsi, aux grandes
valeurs de x, on voit des franges lumineuses pour des
couleurs très variées, et la couleur résultante est de
plus en plus pâle. Si on poursuivait l’axe horizontal
de la figure 26, on verrait des teintes plus pastel, jus-
qu’à tendre vers le blanc à nouveau (on parle de blanc
d’ordre supérieur).

Le principe général d’utiliser des interférences pour
modifier la couleur observée en filtrant certaines lon-
gueurs d’ondes se retrouve dans la nature : c’est ce
phénomène qui détermine la couleur des bulles de
savon ou des ailes de papillon, par exemple. Les ailes
de papillon ont des reliefs très précis à l’échelle mi-
crométrique qui ne reflètent que certaines couleurs en
utilisant des interférences !

Les interférences en lumière blanche sont aussi utiles à des fins expérimentales. Le domaine
de l’interférométrie s’intéresse aux méthodes permettant de mesurer des distances très petites
grâce à des interférences. Par exemple, on peut vouloir mesurer l’épaisseur d’un film mince.
Sur la figure 26, on voit qu’il n’est pas possible de déduire l’épaisseur du film à partir d’une
figure d’interférence monochromatique, puisque la même intensité apparaît périodiquement en
fonction de l’épaisseur. Par contre, c’est possible en lumière blanche, puisqu’aucune couleur
ne se répète !

C’est un peu stylé quand même.

Préparation aux olympiades – version 2025-26 – contributeur : Victor Lequin
Sources : figure 2 : Wikipédia , figure 26 : Surrel, Sauer (2009)
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